Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle.
نویسندگان
چکیده
This study explored mitochondrial capacities to oxidize carbohydrate and fatty acids and functional optimization of mitochondrial respiratory chain complexes in athletes who regularly train at high exercise intensity (ATH, n = 7) compared with sedentary (SED, n = 7). Peak O(2) uptake (Vo(2max)) was measured, and muscle biopsies of vastus lateralis were collected. Maximal O(2) uptake of saponin-skinned myofibers was evaluated with several metabolic substrates [glutamate-malate (V(GM)), pyruvate (V(Pyr)), palmitoyl carnitine (V(PC))], and the activity of the mitochondrial respiratory complexes II and IV were assessed using succinate (V(s)) and N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (V(TMPD)), respectively. Vo(2max) was higher in ATH than in SED (57.8 +/- 2.2 vs. 31.4 +/- 1.3 ml.min(-1).kg(-1), P < 0.001). V(GM) was higher in ATH than in SED (8.6 +/- 0.5 vs. 3.3 +/- 0.3 micromol O(2).min(-1).g dry wt(-1), P < 0.001). V(Pyr) was higher in ATH than in SED (8.7 +/- 1.0 vs. 5.5 +/- 0.2 micromol O(2).min(-1).g dry wt(-1), P < 0.05), whereas V(PC) was not significantly different (5.3 +/- 0.9 vs. 4.4 +/- 0.5 micromol O(2).min(-1).g dry wt(-1)). V(S) was higher in ATH than in SED (11.0 +/- 0.6 vs. 6.0 +/- 0.3 micromol O(2).min(-1).g dry wt(-1), P < 0.001), as well as V(TMPD) (20.1 +/- 1.0 vs. 16.2 +/- 3.4 micromol O(2).min(-1).g dry wt(-1), P < 0.05). The ratios V(S)/V(GM) (1.3 +/- 0.1 vs. 2.0 +/- 0.1, P < 0.001) and V(TMPD)/V(GM) (2.4 +/- 1.0 vs. 5.2 +/- 1.8, P < 0.01) were lower in ATH than in SED. In conclusion, comparison of ATH vs. SED subjects suggests that regular endurance training at high intensity promotes the enhancement of maximal mitochondrial capacities to oxidize carbohydrate rather than fatty acid and induce specific adaptations of the mitochondrial respiratory chain at the level of complex I.
منابع مشابه
Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملImpact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function
Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is requi...
متن کاملChanges in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats. Materials and Methods: In t...
متن کاملEffects of decreased lactate accumulation after dichloroacetate administration on exercise training–induced mitochondrial adaptations in mouse skeletal muscle
Recent studies suggested that lactate accumulation can be a signal for mitochondrial biogenesis in skeletal muscle. We investigated whether reductions in lactate concentrations in response to dichloroacetate (DCA), an activator of pyruvate dehydrogenase, attenuate mitochondrial adaptations after exercise training in mice. We first confirmed that DCA administration (200 mg/kg BW by i.p. injectio...
متن کاملThe Effect of Moderate and High Intensity Resistance Training on the Expression of PGC-1α, TFAM and AMPK of Cardiomyocytes in Elderly Rats
Background & objectives: Age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function. Exercise training can improve mitochondrial function and content in muscle to meet the energy demands of the cells. The purpose of the present study was to investigate the effect of moderate-intensity (MRT) and high-intensity (HRT) resistance training on the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 104 5 شماره
صفحات -
تاریخ انتشار 2008